

PPPL Theory Seminar

Mar. 19. 2021

Collisionless mechanisms of plasma transport in the presence of stochastic open magnetic field lines

Min-Gu Yoo

Princeton Plasma Physics Laboratory, Princeton, NJ, U.S.A.

Outline

Motivation & Introduction

- Thermal quench and open stochastic magnetic fields
- New 3-D kinetic capabilities for simulating plasma transport in stochastic fields

Roles of stochastic open magnetic field lines

- 3-D topology of the open stochastic magnetic field lines
- Magnetically passing and trapped particles

Roles of self-consistent electric fields

- E_{\parallel} : Ambipolarity of plasma transport Passing-trapping condition of electrons
- E_1 : ExB mixing effects on the plasma transport

Summary

Thermal quench transport is critical issue in tokamak disruption problem

- I The plasma disruption is a major challenge of tokamak fusion plasma
 - Thermal Quench (TQ) and Current Quench (CQ)
 - Rapid release of thermal and magnetic energy can damage to PFCs
- Causes of TQ depend on causes of disruption
 - Intentional plasma shutdown for machine protection
 - Impurity pellet injection or massive gas puffing
 - Radiative cooling of bulk thermal plasma
 - Disruptive MHD instabilities
 - Break magnetic surface → magnetic stochasticity
 - Vertical displacement events
 - Duration of TQ ~ a few milliseconds → huge heat load to PFCs

Plasma transport mechanism in the open stochastic magnetic field lines is the key!

R. Sweeney, NF (2018)

Plasma transport mechanism in stochastic magnetic fields is a long-standing research subject

Parallel transport along stochastic field lines with collisional cross-field decorrelation process

- Spatial diffusion of stochastic field lines: $\langle (\Delta r)^2 \rangle \sim 2LD_m$
- Particle motion along and decorrelation from a given field line
- ∇B and curvature drift effects due to the toroidal geometry
 - Trapped electrons should not be stochastic
 - Long confinement of runaway electrons

[Mynick & Krommes (1979, 1980)]

[Rechester & Rosenbluth (PRL'1978), Krommes (JPP'1983)]

Ambipolar electric fields for quasi-neutrality

- Simplified 1-D radial transport model with stochastic magnetic diffusion coefficient [Harvey (PRL'1980)]
- "Working model" for a gyrokinetic simulation on stochastic heat flux [Wang (POP'2011)]
- Intensive researches for external Resonant Magnetic Perturbation (RMP)
 - RMP produces a thin stochastic layer at plasma edge to mitigate/suppress the Edge Localized Modes (ELMs)
 - Plasma transport in stochastic fields + edge physics

[Evans (Nat.Phys'2006), Park (Nat.Phys' 2018)]

[Park (POP'2010), Hager (NF' 2019)]

This work focuses on the 3-D topology of open magnetic field lines and ambipolar electric fields

Previous studies have mostly focused on:

- Infinite length of stochastic magnetic field lines (internal stochastic layer)
- Characterized by 0-D or 1-D stochastic diffusivity of magnetic fields ($D_{
 m m,st}$)
- Dynamics of passing particle along the stochastic field line with collisions

Key effects essential for understanding the Thermal Quench physics

- 3-D topology of the stochastic *open* magnetic field lines
- Ambipolarity of the plasma transport with self-consistent potential in the stochastic layer
- Dynamics of *trapped particles* (magnetic mirror + electric potential well)
- Cross-field decorrelation by $E_{\perp} \times B$ transport and mixing effects

A comprehensive picture of the relation between the plasma dynamics and the 3-D topology of the stochastic layer is needed

New 3-D kinetic capabilities have been developed for simulating plasma transport in stochastic fields

- ☐ GTS (Gyrokinetic Tokamak Simulation)
 - A global gyrokinetic δf particle simulation code to study **micro turbulence physics** of the fusion plasma in tokamaks

- New 3-D kinetic capabilities have been developed to study the plasma transport in the stochastic open magnetic field lines
 - High-resolution Vacuum Field Analysis
 - 3-dimensional Poisson solver
 - Novel delta-f particle method for plasma-wall boundary
 - GPU acceleration using OpenACC (x5 speed-up for total performance)
 - Improved numerical schemes to overcome numerical challenges

Governing equations of system

Prescribed magnetic perturbation

$$\alpha \equiv \frac{\delta A_{\parallel}}{B_{0}} \qquad \delta \mathbf{B} = \nabla \times (\alpha \mathbf{B_{0}}) = \nabla \alpha \times \mathbf{B_{0}} + \alpha (\nabla \times \mathbf{B_{0}})$$

■ Particle motion in the presence of δB

$$\mathcal{L} = q_s \left(\mathbf{A}_0^* + \delta \mathbf{A} \right) \cdot \dot{\mathbf{R}} - (m_s/q_s) \dot{\xi} - \mathcal{H}$$

$$\mathcal{H} = \left(q_s^2 \rho_{\parallel}^2 B_0^2 / 2m_s \right) + \mu B_0 + q_s \bar{\Phi}$$

$$\frac{d\rho_{\parallel}}{dt} = \frac{\mathbf{B}_0^* + \delta \mathbf{B}}{\mathbf{B}_0 \cdot (\mathbf{B}_0^* + \delta \mathbf{B})} \cdot \left[-\frac{1}{q_s} \nabla \mathcal{H} \right]$$

$$\frac{d\mathbf{R}}{dt} = \frac{1}{\mathbf{B}_0 \cdot (\mathbf{B}_0^* + \delta \mathbf{B})} \left[\frac{1}{q_s} \frac{\partial \mathcal{H}}{\partial \rho_{\parallel}} \left(\mathbf{B}_0^* + \delta \mathbf{B} \right) + \frac{1}{q_s} \mathbf{B}_0 \times \nabla \mathcal{H} \right]$$

δB effects on the particle motion —

- particle streaming (<
 $\rho_{\parallel} \pmb{\delta B}$)
- magnetic mirror force ($\propto \pmb{\delta B} \cdot (-\nabla B_0)$)
- electric force ($\propto \delta \mathbf{B} \cdot (-\nabla \Phi)$)

3-D field equation

$$-\nabla \cdot \left[\epsilon_0 \vec{\mathbf{g}} + \sum_{s} \frac{n_s m_s}{B_0^2} \left(\vec{\mathbf{g}} - \frac{\boldsymbol{B_0} \boldsymbol{B_0}}{B_0^2} \right) \right] \cdot \nabla \Phi = e(\delta \overline{n_i} - \delta n_e)$$

Prescribed δB applied on "Cyclone base case" Equilibrium

Equilibrium magnetic configuration

- "Cyclone base case"
- Circular shape limiter wall at $\sqrt{\psi_t}=0.9$
 - Absorbing particle wall
 - Grounded conductor ($\Phi = 0$ at the wall)
- Magnetic perturbations with multiple harmonics

$$\alpha = \sum_{m,n} \alpha_{(m,n)} \qquad \alpha_{(m,n)} = \Gamma(r) \cos(n\phi - m\theta - \omega t + \xi_0)$$
$$(m,n) = [(2,1), (3,2), (4,2), (5,2), (5,3), (6,3), (7,3), (8,3)]$$

$$|\delta B/B_0| \le 10^{-2}$$

Stochastic layer is produced from $\sqrt{\psi_t} \sim 0.45$

Auto-correlation length of stochastic fields

$$L_{\rm auto} = \pi R_0 / \ln(0.5\pi C) \approx 5.6 \text{ m when } C = 3$$

Roles of stochastic open magnetic field lines

- Vacuum Field Analysis in high-resolution
 - Connection length of open magnetic field lines
 - Effective magnetic mirror ratio
 - Trapped particle dynamics
- Test particle simulation without electric fields
 - Temporal evolution of plasma profile in the stochastic layer
 - Characteristics of magnetically passing and trapped particles

Stochastic open magnetic field lines

lacksquare 3 stochastic open magnetic field lines started from the same $\sqrt{\psi_t}$ but different heta position

Starting point

Wall endpoint (+ ζ direction)

Wall endpoint (- ζ direction)

Field line trajectory (+ ζ direction)

Field line trajectory (- ζ direction)

-0.5

3.5

R (m)

Each field line can have a different connection length between two wall endpoints

R (m)

3.5

3.5

R (m)

Connection length of open field lines

1 "High-resolution vacuum field analysis" enables understanding 3-D magnetic topology

1-D averaged Connection Length

3-D Connection Length

Confinement time of $\emph{passing particles}$ is proportional to L_c

 $\tau_{\parallel} \sim \frac{0.5 L_c}{v_{th}}$

Trapped particle motion under strong 3-D δB

- Δr of trapped particle trajectory is much larger than the electron banana width
- The toroidal precession is one of the cross-field decorrelation mechanism
 - Electrons can slowly move to different magnetic field lines and positions
 - Collisionless detrapping by moving electrons from magnetic uphill ($M_{
 m eff}>1$) to downhill ($M_{
 m eff}<1$)

Magnetic mirror effect along field line trajectory

|B| is toroidally asymmetric along field line trajectory

$$B_{\text{max}}^{+\zeta}(x) \neq B_{\text{max}}^{-\zeta}(x) \longrightarrow B_{\text{max}}^{\text{eff}}(x) = \min\left(B_{\text{max}}^{+\zeta}(x), B_{\text{max}}^{-\zeta}(x)\right)$$

- $B_{\text{max}}^{\text{eff}}(x)$ determines the passing-trapping condition
- $B_{\text{max}}^{\text{eff}}(x)$ depends on the position x even in the same field line

Magnetic mirror effect along field line trajectory

• If one of the trajectories in $\pm \zeta$ directions has a very short connection length, the effective magnetic mirror becomes weaker, and particle can more easily exit to the wall

Effective magnetic uphill and downhill

 $\square \text{ Effective magnetic mirror ratio: } M_{\text{eff}} = \min(M^{+\zeta}, M^{-\zeta})$

$$M^{\pm\zeta}(x) = \begin{cases} B_{\text{max}}^{\pm\zeta}/B(x), & \text{if } B_{\text{max}}^{\pm\zeta} > B(x) \\ B_{\text{w}}^{\pm\zeta}/B(x), & \text{if } B_{\text{max}}^{\pm\zeta} = B(x) \end{cases}$$

Effective magnetic uphill $(M_{\rm eff} = B_{\rm max}^{\rm eff}/B_0 > 1)$ trapped $\mu B(x_0)$ x_0 $x_{\mathbf{w}}$

Trapped by the magnetic mirror force if $\left|v_{\parallel}(x_0)/v_{\perp}(x_0)\right| < \sqrt{M_{\rm eff}(x)-1}$

Effective magnetic downhill

No magnetic trapping

Particle is accelerated to the wall

Magnetic mirror ratio and Trapped Particle Fraction

- Effective magnetic uphills ($M_{\rm eff} > 1$) Effective magnetic downhills ($M_{\rm eff} < 1$)
- Trapped particle fraction of Maxwellian distribution

$$F_{\text{trap}}(x) = \begin{cases} \sqrt{1 - M_{\text{eff}}(x)^{-1}}, & \text{if } M_{\text{eff}}(x) \ge 1\\ 0, & \text{if } M_{\text{eff}}(x) < 1 \end{cases}$$

- A considerable amount of electrons $(\le 60 \%)$ can be trapped in the device
- The electron trapped at the uphill can move to the downhill by the toroidal precession and exit to the wall
 - → Collisionless detrapping

Trapped electron dynamics is critical to understand the **electron thermal transport**

Particle simulation setup

Uniform density & temperature with Maxwellian distribution

$$T_e = T_i = 5 \text{ keV}$$

 $n = 1.6 \times 10^{19} \, m^{-3}$

Focusing on how the plasma collapses to the wall

$$\lambda_{mfp} \gg L_c \gg L_{auto}$$
10 km 1 km 10 m

- 1. Test particle simulation (without E fields)
- 2. Ambipolar transport simulation (E_{\parallel} only; ignoring ExB)

3. Full simulation with consistent potential and ExB ($E_{\parallel}+E_{\perp}\times B$)

2D Evolution of Electron and Ion Density (without E fields)

Test Particle Simulation: Density Evolution

- Electron density collapse is 60 times faster than ion collapse ($v_{th}^e/v_{th}^i=\sqrt{m_i/m_e}{\sim}60$)
- Electron density quickly saturates to the level of the trapped particles

Test Particle Simulation: Electron Temperature

- Electron temperature is anisotropic ($T_{
 m e,\perp}\gg T_{
 m e,\parallel}$) due to the remained trapped electrons
- Edge temperature is slowly decreasing because of the detrapping by toroidal precession

Different confinement times of Passing and Trapped particles

Fitted $\tau_{\rm pass}{\sim}7.8~\mu s$

$$0.5 \langle L_c \rangle / v_{th} = 7.5 \,\mu s$$

$$\tau_{\parallel, \mathrm{pass}}{\sim}0.5~L_c/v_{th}$$

- Passing electron density quickly decays with a short confinement time
- Trapped electron density very slowly decays due to the collisionless detrapping by the toroidal precession
 - The outer radial surface has more magnetic downhill regions
 → faster detrapping

"Vacuum Field Analysis" well predicts the dynamics of test particles

 The passing particle density is higher at longer connection length regions

$$\tau_{\parallel,\mathrm{pass}}{\sim}0.5\,L_c/v_{th}$$

 The trapped particle density ratio is the same as the trapped particle fraction

$$F_{\text{trap}}(x) = \begin{cases} \sqrt{1 - M_{\text{eff}}(x)^{-1}}, & \text{if } M_{\text{eff}}(x) \ge 1\\ 0, & \text{if } M_{\text{eff}}(x) < 1 \end{cases}$$

Roles of the electric fields

- \square E_{\parallel} : acceleration of charged particles
 - Impedes the fast electron loss
 - ⇒ ambipolar plasma transport (quasi-neutrality)
 - Determines the passing-trapping condition of electrons (combined with the magnetic potential)
- \Box E_{\perp} : ExB drift motion across the magnetic field lines
 - Deforms the plasma structure (mixing effect)
 - Direct cross-field transport in the radial direction
 - Enhances the collisionless detrapping of high- v_{\perp} trapped particle
 - The steady decrease of the electron temperature

The ambipolar electric field impedes the fast electron loss

Electrostatic Potential

 $(v_{th}^e/v_{th}^i = \sqrt{m_i/m_e} \sim 60)$

Electron potential energy

Deceleration of electrons

- The electron loss is 60 times faster than the ion loss without the ambipolar electric field
- The *positive ambipolar potential* ($e\Phi{\sim}T_e$) builds up for the *ambipolar transports* ($\Gamma_ipprox\Gamma_e$)
 - → Impedes the fast electron loss to match with the ion loss (for quasi-neutrality)

1-D model of ambipolar electric fields

Ambipolar $E_{\rm r}$ field @ $t = 10 \ \mu {\rm s}$

1-D ambipolar radial electric fields (Harvey PRL' 1981)

$$E_r^A(r) = -\left(\frac{\langle T_e \rangle}{e}\right) \frac{\partial}{\partial r} \left[\ln(\langle n_e \rangle \langle T_e \rangle^{1/2}) \right]$$

- Maxwellian Distribution
- Zero flux assumption ($\Gamma_i = \Gamma_e = 0$)

- Radial electric fields from the simulation agree with the analytic model except the edge
- At the edge, the ion flux is not negligible, and the distribution function is deformed from Maxwellian

The ambipolar potential has 3-D structure associated with the topology of the stochastic layer

Plasma ambipolar transports by electric fields

Temporal evolution of the plasma (only E_{\parallel} case)

- 1. Ambipolar potential builds-up with electron thermal speeds
- 2. Plasma collapses with ion sound speeds
 - Ambipolar transport
 - Lower density at shorter L_c regions
- 3. The potential becomes smaller again at the edge due to lower pressure gradient

$$E_r^A(r) = -\left(\frac{\langle T_{
m e} \rangle}{e}\right) rac{\partial}{\partial r} \left[\ln(\langle n_{
m e} \rangle \langle T_{
m e} \rangle^{1/2})\right]$$

$$\nabla_{\parallel}(\mathsf{n_e}\mathsf{T_e^{1/2}}) \ \rule{0mm}{.} \ 0mm} \ \rule{0mm}{.} \ \rule{0mm}{.} \ \rule{0mm}{.} \ 0mm} \ 0$$

Particle passing-trapping condition along the field line

Total potential energy for charged particles

$$\mathcal{V}(x) = q\Phi(x) + \mu B(x)$$

Exact Trapping condition

$$\varepsilon_{\parallel}(x) + \mathcal{V}(x) < \mathcal{V}_{\max}^{\text{eff}}(x)$$

- It is hard to find exact $V_{\max}^{\text{eff}}(x)$ due to fluctuating Φ

Simplified trapping conditions

Trapping for high μB particles ($\mu B \gg q \Phi$) —

$$\varepsilon_{\parallel}(x) < \mathcal{V}_{\max}^{\text{eff}}(x) - \mathcal{V}(x) \approx \mu \left(B_{\max}^{\text{eff}}(x) - B(x) \right)
v_{\parallel}^{2}(x) < \left(B_{\max}^{\text{eff}}(x) / B(x) - 1 \right) v_{\perp}^{2}$$

The same as the pure magnetic mirror condition

Global trapping with respect to wall endpoints

$$\varepsilon_{\parallel}(x) + \mathcal{V}(x) < \mu B_{\mathrm{w}}^{\mathrm{eff}}$$

$$v_{\parallel}^{2}(x) + \left(1 - \frac{B_{\mathrm{w}}^{\mathrm{eff}}}{B(x)}\right) v_{\perp}^{2}(x) < -\frac{2q}{m} \Phi(x)$$

Global trapping with respect to wall endpoints

- At the magnetic uphill ($\Delta B > 0$), more particles are trapped due to additional magnetic mirror effects
- At the magnetic downhill ($\Delta B < 0$), the high v_{\perp} particles can be passing particles

ExB mix the plasma across the field line

 $\Phi @ t = 100 \; \mu\mathrm{s}$

(i)

Simulation including only E_{\parallel}

(h)

(g)

 $n_{\rm i} @ t = 100 \ \mu {\rm s}$

- Strong E_{\perp} across different L_c regions
 - → Fast ExB transport and mixing

- ExB mixing deforms the plasma structure
 - Radial eddies + poloidal flow

ExB mix the plasma across the field line

\Box Non-zonal potential $\delta\Phi$ at a specific radial surface ($\sqrt{\psi_t}$ =0.77)

- E_{\parallel} only case
 - Field-aligned structures
 - A sharp difference across field line
 - Peak energy spectrum at $k_y{\sim}8$

- $(E_{\parallel} + E_{\perp} \times B)$ case
 - Field-aligned structures
 - **Higher** k_v modes become more important
 - Dynamic finer structures by ExB mixing

ExB mixing enhances the collisionless detrapping of high- v_{\perp} particle

Confinement of high v_{\perp} particles (parallel dynamics)

- They are well-trapped at magnetic uphill regions
- They can exit to the wall at magnetic downhill regions by overcoming the electric reflective force
- ExB transport carries and mixes the electrons radially and poloidally

ExB mixing enhances the collisionless detrapping in average

ExB contributes considerable amount of electron fluxes

Electron Radial Fluxes @ $\sqrt{\psi_t} = 0.65$

ExB transport contributes about (30~40)% of particle flux and (50~60)% of heat flux

Comparison of Electron temperatures with 3 different physical models

- ☐ *Trapped particle transport* is critical for determining the electron thermal transport and temperature
 - (No E field case) and (only E_{\parallel}) cases have saturated electron temperature with higher gradients
 - $(E_{\parallel} + E_{\perp})$ case shows that the electron temperature steadily decrease in the time scale of milliseconds
 - $High-v_{\perp}$ trapped electrons can be detrapped by ExB mixing and toroidal precession
 - At $\sqrt{\psi_t}=0.7$ surface, the temperature decreasing rate is about (-500 eV/ms)

Summary

- First-principles-based calculation of plasma transport in stochastic magnetic fields has been developed for a global gyrokinetic code GTS
- We found that self-consistent electric fields for plasma transport ambipolarity
 play critical roles in determining plasma transport associated with the 3-D topology of stochastic layer
 - E_{\parallel} makes ambipolar plasma transport that propagates along stochastic fields with ion sound speed
 - E_{\parallel} and 3-D magnetic mirror ratio determines the passing-trapping condition of the particles
 - $E_{\perp} \times B$ radial transport is considerable (particularly for the trapped particles)
 - $E_{\perp} \times B$ mixing across the stochastic fields enhances the collisionless detrapping of high- v_{\perp} trapped particle
- We observed a considerable degradation of the global plasma profile and electron temperature within the timescale of milliseconds that agrees with the typical time scale of the thermal quench
- Future works
 - Collisional transports
 - Recycling particles
 - More realistic plasma profile and magnetic perturbations

